Int. J Heat Muss Trunster
Printed in Great Brtain

Vol. 33, No. 9. pp. 1929-1936, 1990

0017 -9310 %) 3300+ 0.00
¢ 199 Pergamon Press ple

A stochastic model for particle convective
heat transfer in gas—solid
fluidized beds

AJAY MATHUR
Tata Energy Research Institute, 7 Jor Bagh, New Delhi 110 003, India

(Received 9 June 1988 and in final form 11 May 1989)

Abstract—Particle convection is the predominant mode of heat transfer in gas-solid fluidized beds of small
particles at temperatures below 650 K and near-ambient pressures. The mechanism of heat transfer is
unsteady-state conduction between the heat transfer surface and the hot bed particles which contact it 1n
a recurrent, aperiodic manner. The particle-surface contacting is treated here as a stochastic process with
the inter-packet periods being described by a constant-rate Poisson distribution and the contact periods
by a negative exponential distribution. These features of the contacting process are incorporated into the
packet heat transfer model of Baskakov, and expressions for the heat transfer coefficient and its variance
are derived. The contact period distribution data of Ozkaynak and Chen for a bed of 245 um glass beads
at three fluidizing velocities is employed to predict the heat transfer coefficient and its variance at the three
velocitics. The predicted heat transfer coeflicients are found to be in excellent agreement with the measurad
heat transfer coefficients. However, paucity of simultaneous contact-period distribution and heat transter
data has limited further verification of this model.

INTRODUCTION

HEAT TRANSFER rates to surfaces immersed in gas
fluidized beds are several times those to surfaces in
flowing gas streams. The enhancement in heat transfer
occurs due to the contact between the hot, sold
fluidized particles and the heat transfer surface. This
mode of heat transfer, termed as particle convection,
supplements the gas convective and radiative modes
of heat transfer in gas fluidized beds, and is the domi-
nant mode in small particle fluidized beds. Radiative
heat transfer constitutes only 15% of the total heat
transfer at a bed temperature of 1175 K, and is neg-
ligible at temperatures below 675 K [1]. Gas con-
vective heat transfer is smaller than particle convective
heat transfer by a couple of orders of magnitude in
small particle beds at near-atmospheric pressures [2].
It has been argued on hydrodynamic principles that
gas convective heat transfer is negligible for beds with
Re.; < 10, or Ar < 21700 [3].

The particle convective heat transfer process has
been extensively studied, and several models have
been proposed. These models have been discussed and
evaluated in various monographs and reviews [4-7],
and the approach which is now accepted is broadly
envisioned to occur as follows: hot, solid particles
move from the bulk of the bed and contact the surface
in a recurrent, aperiodic manner. The mode of heat
transfer during the contact period is unsteady-state
heat conduction. The earliest heat transfer model is
due to Mickley and Fairbanks [8), who conceptualized
the volume of the bed emulsion that is affected by the
thermal process during a contact period as a ‘packet’,
and related the instantaneous particle convective heat

transfer coefficient. /1,(r) (or its inverse. the packet
resistance, R). to the packet properties as

h(h=1LR,= k.C.p.it.m}" " (n

Equation (1) overpredicts h,, especially tor short
packet contact periods, and implies that it tends to
infinity as 7. tends to zero. Baskakov [9] argued that
the packet continuum is significantly disturbed close
to the heat transfer surface and suggested that an
additional “contact’ resistance, R,, occurs next to the
heat transfer surface, in series with R,. The instan-
taneous packet heat transfer coefficient, /i.(1). for the
constant heat transfer case is then given by [6]

ho(t) = erfc (X) exp (XH/R. ()
where
X = RPI/RC\/n. (3)

Xavier and Davidson [10] suggest the contact resist-
ance can be expressed as

R. = d,[k.b. (4)

The assumption in describing the contact resistance
by equation (4) is that the contact resistance consists
of a gas laver of average thickness, d/b, in between the
heat transfer surface and the emulsion. However, the
presence of such a film is doubtful, and the contact
resistance is best explained in terms of the real contact
geometry between particles and the surface. Decker
and Glicksman [11] point out that actual particle-to-
surface contact occurs only at a limited number of
microscopic roughness elements. Their model of the
total conduction heat transfer within the particle in
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NOMENCLATURE
A dimensionless variable, Y/C Q,~ heat transferred from N packets to the
A value of A4 at the expected value of C surface [J]
Ar Archimedes number, gd2 p,(p,— p,)/1t* R. surface contact thermal resistance
b constant [m2K W]
C inverse of mean packet contact period R, packet thermal resistance [m* K W~
s~ Re  Reynolds number, Ud,p,/u
¢ expected value of C[s7'] Re,; Reynolds number at minimum
C, heat capacity of solid particles fluidization, Uyd,p,/u
kg 'K L contact period of a packet [s]
d, bed particle diameter [m] t, time between successive packets
D average particle arrival rate [s~ ] (interpacket period) (s]
F survivor distribution function L total time between the arrival of
g acceleration due to gravity [m s~ 7} successive packets [s]
iy instantaneous packet to surface heat Ty bed temperature [K]

transfer coefficient [W m~2 K]
h, average particle convective heat transfer
coefficient [W m=? K]
expected value of the average particle
convective heat transfer coefficient

Wm 2K

k, thermal conductivity of emulsion packet
(Wm-'K™

ky thermal conductivity of fluidizing gas
Wm™' K]

k, thermal conductivity of solid particles
Wm~'K™]

M mean of a distribution

N number of packets involved in the heat
transfer process

Nu,  expected value of the Nusselt number,
Ep-edp/kg

p probability distribution function of
packet contact period

D: instantaneous probability of the presence
of i packets at a point on the surface

P expected number of packets present at a

point on the surface
o, heat transferred from a packet to the
surface [J]

T, surface temperature [K]

U superficial fluidizing velocity {m s~ ']

U, superficial fluidizing velocity at minimum
fluidization [m s~ ']

Vv equilibrium distribution of interpacket

periods
w equilibrium distribution of packet
contact periods
X dimensionless variable, R,/R.\'n
Y square root of inverse packet time
constant [s~ '3
dimensionless variable defined by
equation (29).

N

Greek symbols

o, thermal diffusivity of fluidizing gas
[m?s~]

€ time-averaged bed voidage

&ne  time-averaged bed voidage at minimum
fluidization

u viscosity of fluidizing gas [kgm™"'s~']

Pe emulsion packet density [kg m™ 7]
s fluidizing gas density [kg m~’)
Ps density of solid particles [kg m™?].

the vicinity of the contact point as welt as conduction
through the gas layer separating the particle and
surface shows that very high heat transfer rates
through the roughness elements occur only for the
first 10-20 us of the contact period. Subsequently, the
contact Nusselt number remains practically un-
changed. The value is also reasonably constant over
a wide range of particle thermophysical properties
and surface roughnesses. This probably explains why
a simple constant like b is successfully able to represent
the contact Nusselt number. The value of b ranges
from 4 to 12 in the literature. From equations (1), (3)
and (4), X can be expressed as

X =Y1"? = [th2b? [k C,p.d?}"*. (5)

The amount of heat transferred per unit surface area
during the packet contact period is therefore given by

0, = f (Ts— T)hy(0)

=[(Ts = T)/R] 'rc exp (Y2r) erfc (Yt"2) dt
(]

={(Ts—T.)/Y?R][erf (Yt!'?) exp (Y1)
+@QY? I Jm-11. (6)

Equations (6) highlights the influence of the packet
contact period, ¢., on the packet heat transfer: the
amount of heat transferred is zero for zero contact
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period. and increases with the square root of the con-
tact period for very large values of r.. Over a long
period of time, the heat transferred will be the sum of
the heat transfer due to the many packets that have
contacted the surface. Thus, if N packets have con-
tacted the surface, the total heat transfer is given by

N
Qpv =Te=T)/Y*R] Y [erfc (Y1 *)exp (Y7 1,.)

+2(Yte/ym—1] ()

where ¢, is the contact period of the ith packet. This
heat transfer has occurred during the time period ¢,
where ¢, 1s equal to

[Z (IC,+tg,-):|.

t,; 1s the time period between the departure of the
ith packet and the arrival of the (i+ 1)th packet and
reterred to here as the inter-packet period. The aver-
age particle convective heat transfer coefficient. 4.
can then be defined as

=
i

P Qp.r\.‘/’[( TR - T\‘)Il]

i

N
Y ferf (Y24 exp (Y?1,)

=0

N
+2(Yr/ym)—1IY2R. Y (tu+1)) (8)

i=1

In the case where the contact period of all packets
is the same and the time periods between successive
packets are equal, equation (8), without the sum-
mations, gives the value of /, [6].

The contact periods and the time periods between
packets, however, are stochastic variables and can
take values between zero and infinity for a macro-
scopically undisturbed system. It is a simplification to
assume f; = (L) and t,; = (1,),.,. If this assumption
is made. it implies that for a particular set of bed
conditions, t, and t. have unique values, and measured
values are random fluctuations about these unique
values. In such a case, the experimentally obtained
frequency distributions of ¢, and ¢, would be approxi-
mated by the normal curve. Experimental evidence,
however, indicates that the ¢, frequency distribution
is best approximated by log-normal and gamma dis-
tributions [12]. Both these latter distributions are
skewed and take values from zero to infinity.
Additionally, the negative exponential distribution
(which is a special case of the gamma distribution) is
the only distribution having a truly Markovian
character inasmuch as it is endowed with a complete
lack of memory [13]. Consequently, the contact period
of the ith packet is in no way affected by the contact
periods of all the preceding (i — 1) packets. This exper-
imental finding therefore argues for the treatment of
the packet contact periods as a Markovian stochastic
variable. This is carried out in the following section.
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STOCHASTIC MODELLING OF PACKET
CONTACT PERIODS

It is not possible to deterministically model the
packet-surface contacting process. The packet depar-
ture is probably influenced by the pressure waves pre-
ceding bubbles (whose formation and distribution in
the bed are themselves random), the local geometry
and roughness of the surface, jetting of air from
bubbles trapped upstream of the immersed surface,
etc. The net effect of all these phenomena (seemingly
random at the macroscopic level) is to impart a ran-
domness to packet departure. Consequently, the
packet contact period can be treated as a Markovian
process. Specifically, it can be assumed that the prob-
ability of packet departure is constant throughout
the contact period. For example, if the instantaneous
probability of packet departure is 0.4 at the time of
packet arrival, it is still 0.4 after the packet has becn
at the surface for 1 ms, or 10 ms, or | s: the length of
the contact period does not influence the instan-
taneous probability of departure. This seems to be a
fair assumption as the macroscopic bed characteristics
remain unchanged during the contact period.

The probability distribution function (pdf) of the
packet contact period is then given by the negative
exponential distribution (see p. 458 of ref. [13]):

p)y=Cexp (—Cp) 9

where C is the probability of packet departure at any
instant (which is constant over the contact period).
Equation (9) implies that the probability that a packet
will have a contact period equal to ¢ i1s given by
Cexp(—C).

Now, over a long period of time, a large number
of packets contact the surface. These packets have
different contact periods. Let W (s) represent the con-
tact period distribution of the packets. H'(s) is then

given by (see p. 28 of ref. [14])
W) = F(t)M (10)

where F(¢) is the so-called ‘survivor function’. defined
as

F(r)::f plx)dx (th

and M is the expected value of the contact period
M= J tp(t) de. (12)
0
Thus

P |
W) = J p(x)dx/ J tp(t) dr. (13)
1 I Jo
Interestingly enough, the age distribution of packets
over a large surface area at a given instant is also given
by W(1) and defined by equation (13) (see p. 61 of ref.
[14]). This shows the statistical equivalence of con-
sidering the behaviour of packets at one point on the
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surface for a long period of time and that of packets
over a large surface area at a given instant. This is a
useful property that will be utilized later to incor-
porate time-averaged surface properties into equation
(8), which has been developed for a local time-depen-
dent process.

From equations (9) and (13)

Wi(t) = Cexp (—Ct.). (14)

Thus, for the particular case when the packet contact
period pdf is exponential, the distribution of contact
periods (or ages) is also exponential. The properties
of the negative exponential distribution imply that the
mean contact period would be 1/C. This distribution
is now used to develop the stochastic heat transfer
model for particle convection.

HEAT TRANSFER MODEL

The average heat transfer coefficient obtained from
the packet theory is given by equation (8). The sum-
mations in equation (8) are converted to integrals
using the contact period pdf of equation (14) by the
transformation

2St) = 'L Wit) S (¢) dr.. (15)

Thus
hy = (C/Ych)[ f " ferf (Y22%) exp {— (C— Y1}
0

+QY)n)t, exp (= Ct.)

—exp (—Ct.)] dtc]/[’r0 t.W(t)de,
0
+ Jw V(1) dzg:’

where V(t,) is the distribution of inter-packet (or gas
contact) periods. Solution of equation (16) yields

5 = WYPRI(Y?/C)'2 — 1)1 = (C/Y?)]

P x p'el
f th(tc)dtc+f V() de,
0

0

(16)

a7

The first term in the denominator is equal to 1/C, but
evaluation of the second term is not possible until the
form of V(t,) is known. At this point, it is assumed
that the distribution of inter-packet periods at the
surface is a Poisson process. Then V' (1,) is also given
by the exponential distribution (see p. 6 of ref. [15])

(18)

where 1/D is the mean inter-packet period. The second
term in the denominator of equation (17) is then equal
to 1/D. The average heat transfer coefficient is there-
fore given by

V(1) = Dexp (—Dt,)

A. MATHUR

£ _WRIA = 13/{A-1))

P 1+(C/D) (19)

where

A=Y?C. {20)

Both C and D are system variables, and need to be
determined experimentally. However, they are inter-
related through the particle fraction at the surface.
This interrelationship is discussed in the following.

The assumption of the inter-packet period being
described by a Poisson process of rate D, and the
packet contact period being described by an expon-
ential distribution, equation (14), leads to the fol-
lowing expression for the probability that i packets
are present at a point at a given instant (see p. 177 of
ref. [15])

p. = [(D/OY/i] / [ 5 (D/C)"w] @1

Jj=0

where k is the maximum number of packets that come
into contact with the surface at any given instant. At
a point on the surface, only one packet can come into
contact with it at a given instant ; hence & is one. The
expected value of the number of packets at any point
on the surface is therefore

P=0po+ti'p
=[O () +MD/O1 +(D;O)]
= (D/O)/[1+(D/O)}.

Since P is the time-averaged expected number of
packets at each point on the surface, and the
maximum number of packets at each point can be 1,
the ratio, P/l, is the time-fraction for which a point
is covered by packets. Using the statistical equivalent
of time-averaged and space-averaged properties
brought out earlier (following equation (13))

(22)

P/l =(D/O1+(D/C)] =1-¢ (23)
where ¢ is the time-averaged voidage. Thus
I[+(C/D)=1/(1—¢). 24

Equation (24) represents the theoretical development
of an ‘obvious’ solution which is very widely used in
fluidized bed heat transfer models. It can be visualized
as the equality of the particle fraction at the surface
with the fraction of time for which packets are present
there.

Substituting in equation (19)

hy = (HR)(1—)[{A" = 1}/{A=1}]. (25)
Variance of calculated

The value of k, predicted by equation (19) is a mean
or expected value: in practice, 4, values will range
over a band. This variation occurs because of the
uncertainty in the value of C which is calculated by
regression of contact time data. This regression yields
an expected value of C, C, and its variance, Var (C).
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The uncertainty in &, can then be represented by its
variance. Var (k). which is related to the variance of
C as follows {16]:

Var (A,) = (dfi,/dC);_» Var (C). (26)
Differentiating equation (19) with respect to C gives
(dh,dC) = (b, ONI(YTHUYC)—~ 1))

~{YO) HUYO) P = 1))

—UCIDY (L +(CIDY}) (27)
From equation (22)
(CID){1+(CID)} =e. (28)
From equations (26)—(28)
Var (f,) = (h,,/C)* Var (C)[{A/(A~-1))
A4 =D = (29)
where
hye = (LRI =[(A" P =D,(A=D]. (30
Thus
N, = b(1=&)[(4'7 = D/(A-1)] (3hH
and
Var (Nu) = (d,'k,) Var (4,). (32)

COMPARISON WITH EXPERIMENTAL DATA

Evaluation of Nu, using equation (31) requires the
knowledge of three variables: b, ¢ and 4. There is
some dispute in the literature as to whether b should
be 6 [10] or 12 [17]. The difference in the value of
these two estimates is large, and comparison with
experimental data should reveal which one provides a
better fit. In other words, b is treated as an empirically
determined constant. (1 —¢g) is an easily measured
quantity. In the absence of experimental data, & can
be evaluated from the following correlation for small
particle beds [18]:

£ (1—¢) = 4(RejAr)*3*, (33)

Grewal and Saxena [18] attribute an uncertainty of
+ 10% to equation (33) for beds with a wide variety
of materials (glass beads, silicon carbide, nickel,
copper. sand, coke, alumina, etc.), average particle
diameters ranging between 167 and 1450 um, atmos-
pheric pressure. and temperature up to 1373 K. Packet
properties required to compute Y are calculated from

equations (34) and (36) following the recom-
mendations of Xavier and Davidson [10]:
(koiky) = (kyik ) +(0.1d, U, /2,) (34)
where
Z =0.28—0.757 log &,,—0.057 log (k,/k,) (35)
and
pe = p(1 —&yr). (36)
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Table 1. Properties of the 245 um glass beuds [12]
Particle thermal conductivity 089 Wm "K'
Particle heat capacity 7536Jkg 'K
Particle density 2470 kgm™
Slumped bed void traction 0.39
Minimum fluidizing velocity 0.0588 m's

[t is implicit in equations (34)—(36) that the packet
consists of incipient fluidized emulsion.

In this comparison, the values of C have been taken
from the data of Ozkaynak and Chen [12] for the
contact period distributions in a bed of 245 um glass
beads at three different velocities. This particular data
set has been chosen as simultaneous measurements of
the packet contact period distribution and the heat
transfer coefficient are available. The frequency data.
graphically presented by Ozkaynak and Chen [12], are
fitted to the form of equation (14) and the maximum
likelihood value of C, C, is obtained. Table 1 presents
the properties of the 245 um glass beads. Figure |
shows o compuarison of the best-fit Poisson dis-
tributions with the experimental data. It should be
noted that owing to the nature of the Poisson dis-
tribution, the best-fit was estimated with the contact
period data in deciseconds (rather than scconds).
Consequently, the constant within the exponential
term in equation (14) becomes ten times the best-fit
value of C given in Table 2 when the contact period
is in seconds.

Table 2 lists the regressed values of € {and the
associated variance) for the three cases. The value of
Y? for the bed (which is not affected by velocity) is
0.0674b°. The bed is assumed to be at 300 K and
1 atm. The computed values of /,. and Var (/7;,)
at the three velocities are also listed in Table 2. as are
the experimental values of A, at thesc conditions as
measured by Ozkaynak and Chen [12]. A comparison
of the calculated 1, values with the experimental data
of Ozkaynak and Chen [12] over the complete velocity
range is shown in Fig. 2 for the two values of 5.
The error bar on the calculated values indicates one
standard deviation (square root of the vartance of A,)
on either side of /..

Excellent agreement of the model predictions with
a b value of 12 occurs with the experimental data. The
expected values slightly overpredict the experimental
values, but this overprediction is always less than 6%
and well within the one standard deviation range
shown in Fig. 2.

CONCLUSIONS

A stochastic picture of the particie convection pro-
cess is drawn and used to develop a heat transfer
model. Unfortunately, due to the paucity of sim-
ultaneous particle contact period distribution data
and heat transfer data, model predictions could be
compared with experimental data at three points only.
At these three points, excellent agreement is obtained
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FiG. 1. The equilibrium contact period data of Ozkaynak and Chen [12] for three velocities in a bed of
245 pm glass beads and the corresponding best-fit Poisson distributions.

Table 2. Computed properties of the beds of 245 um glass

beads at different velocities

U(ms Y
0.122 0.244 0.396

C(s™h 0.3392 0.5781 1.087
Var (C) (s73) 0.1046 0.3039 1.4768
€ 0.4985 0.5365 0.5635
b (Wm™2K™")

b=6 282.07 268.9 260.0

b=12 565.5 537.9 520.0
Var (h,)

b=6 1386.55 1570.10 2352.68

b =12 5572.96 6282.75 9410.73
o(h,)

b=6 372 39.6 48.5

b=12 74.7 79.26 97.0
- 543.9 521.9 492.0
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F1G. 2. Comparison of heat transfer coefficient predicted by

the model for two values of b with the experimental data of

Ozkaynak and Chen [12]. The vertical bars on the predicted
values represent one standard deviation on either side.

between the expected value of the particle convective
heat transfer coefficient (predicted by the model) and
the experimentally measured overall heat transfer
coefficient. The overall heat transfer coefficient can be
considered equivalent to the particle convective heat
transfer coefficient here since this data pertains to a
bed of small particles (245 um glass beads) at ambient
conditions in which the gas convective and radiative
components of heat transfer are negligible.

This limited comparison also clearly shows that the
contact Nusselt number is 12 (as previously shown by
Gloski et al. [17)). In a sense, this confirms the non-
smooth particle surface contact picture of Decker and
Glicksman [I1], and brings out the fact that the
majority of heat transfer occurs through the micro-
scopic-level gas gaps between the surface and the
particle. The model development also brings out the
assumptions which underlie the equivalence of the
average heat transfer coefficient and the product of
the local heat transfer coefficient and the particle con-
centration: an exponential distribution of particle
contact periods, and a constant-rate Poisson dis-
tribution of interpacket periods.

Much more comprehensive testing of the model is
required over a range of particle sizes, bed pressures
and temperatures. The velocity dependence is shown
to be well represented by the model.

REFERENCES

{. A. Mathur, Hydrodynamic and heat transfer studies in
gas—solid fluidized beds, Ph.D. Thesis, University of
INinois at Chicago, Chicago, Illinois (1986).

2. V. K. Maskaev and A. P. Baskakov, Characteristics
of external heat transfer in fluidization bed of coarse
particles, J. Engng Phys. 24, 589 (1972).

3. S. C. Saxena and V. L. Ganzha, Heat transfer to
immersed surfaces in gas-fluidized beds and powder
characterization, Powder Technol. 39, 199 (1984).

4. S. S. Zabrodsky, Hydrodynamics and Heat Transfer in
Fluidized Beds. MIT Press, Cambridge, Massachusetts
(1966).



Particle convective heat transfer in gas-solid fluidized beds 193

. J.S. M. Boticiill, Fluid-Bed Heat Transfer. Academic
Pre.s, London (1975).

. N.L Gelperin and V. G. Einstein, Heat transfer in fluid-
ized beds. In Fluidization (Edited by J. F. Davidson and
D. Harrison), pp. 471-540. Academic Press, London
(1975).

. S. C. Saxena and J. D. Gabor, Mechanisms of heat
transfer between a surface and a gas-fluidized bed for
combustor application, Prog. Energy Combust. Sci. 7,
73 (1981).

. H.S. Mickley and D. F. Fairbanks, Mechanism of heat
transfer to fluidized beds, A.1.Ch.E. JI 1, 374 (1955).

. A.P. Baskakov, The mechanism of heat transfer between
a fluidized bed and a surface, Inr. Chem. Engng 4, 320
(1964).

. A. M. Xavier and J. F. Davidson, Heat transfer in fluid-
ized beds. In Fluidization (Edited by J. F. Davidson,
R. Clift and D. Harrison) (2nd Edn). Academic Press.
London (1985).

. N. A. Decker and L. R. Glicksman, Conduction heat

transfer at the surface of bodies immersed in gas fluidized

A

beds of spherical particles, 4.1.Ch.£. Symp. Ser. 77(208).
341 (1981).

. T. F. Ozkaynak and J. C. Chen, Emulsion phase resi-

dence time and its use in heat transfer models in fluidized
beds, 4.1.Ch.E. JI 26, 544 (1980).

. W. Feller, An Introduction to Probability Theory and its

Applications, Vol. 1. Wiley Eastern, New Delhi (1983).

. D. R. Cox, Renewal Theory. Methuen, London (1967).
. D. R. Cox and H. D. Miller, The Theory of Stochastic

Processes. Chapman & Hall, London (1977).

. A.M.Mood. F. A. Graybiliand D. C. Boes, Introduction

to the Theory of Statistics (3rd Edn). McGraw-Hill.
New York (1974).

. D. Gloski, L. Glicksman and N. Decker, Thermal resist-

ance at surface in contact with fluidized bed particles.
Int. J. Heat Mass Transfer 27, 599 (1984).

. N.S. Grewal and S. C. Saxena, Maximum heat transfer

coefficient between a horizontal tube and a gas-solid
fluidized bed, Ind. Engng Chem. Process Des. Dev. 20,
108 (1981).

UN MODELE STOCHASTIQUE POUR LA CONVECTION THERMIQUE SUR UNE
PARTICULE DANS DES LITS FLUIDISES GAZ-SOLIDE

Résumé—La convection de particule est le mode prédominant de transfert thermique dans des lits fluidisés
de petites particules a des températures inférieures a 650 K et a des pressions proches de 'ambiance. Le
meécanisme de transfert de chaleur est la conduction variable entre la surface et les particules du lit chaud
qui sont en contact avec elle d'une fagon récurrente et apériodique. Le contact particule-surface est traite
comme un processus stochastique avec des périodes qui sont décrites par une distribution de Poisson et les
périodes de contact par une distribution exponentielle négative. Ces mécanismes de contact par une
distribution exponentielle négative. Ces mécanismes de contact sont incorporés dans le modéle de transfert
de Baskakov et des expressions sont obtenues pour le coefficient de transfert thermique et sa variance. Les
données de distribution de période de contact de Ozkaynak et Chen pour un lit de billes de verre de 245
um a trois vitesses de fluidisation sont employées pour prédire le coefficient de transfert thermique et sa
variance aux trois vitesses. Les coefficients ainsi calculés sont trouvés étre en excellent accord avec les
coefficients mesurés. Néanmoins, la rareté des données simultanées sur la distribution des périodes de
contact et des transferts de chaleur limite la vérification de ce modéle.

EIN STOCHASTISCHES MODELL FUR DIE WARMEUBERTRAGUNG DURCH
PARTIKELKONVEKTION IN WIRBELSCHICHTEN

Zusammenfassung—Partikelkonvektion ist der dominierende Mechanismus der Warmetbertragung in Gas-
Festkdrper-Wirbelschichten kleiner PartikelgroBe. Temperaturen unterhalb 650 K und nahezu Umgebungs-
druck. Der Wirmeiibergang erfolgt durch instationdre Leitung zwischen der Wirmetauscherober-
flache und den heiBen Partikeln, die sich in einer unregelmiBig wiederkehrenden Weise beriithren. Die
Beriihrung der Partikel wird als stochastischer Vorgang behandelt, der zwischen einer Kontaktphase
mit der Wirmetauscherfliche und einer Phase, in der sich die Partikel in der Schicht befinden, unterscheidet.
Die erste Phase wird durch eine Poisson-Verteilung beschrieben, die zweite durch eine negative Exponential-
vertetlung. Diese Merkmale des Kontaktvorgangs werden in das Modell von Baskakov eingefiihrt ; es ergeben
sich Austriicke fir den Wiarmeiibergangskoeffizienten und seine Schwankung. Die Verteilungsdaten von
Ozkaynak und Chen fiir die Kontaktperiode in einem Wirbelbett mit Glaskugeln (Durchmesser 245 um)
bei drei unterschiedlichen Fluidisierungsgeschwindigkeiten werden zur Berechnung von Wirmeiibergangs-
koeffizienten und deren Schwankung verwendet. Die Ubereinstimmung mit MeBwerten ist hervorra-
gend. Die Verifikation des Modells wird jedoch durch einen Mangel an Daten fir die Verteil-
ung der Kontaktperivde und den Wirmeiibergang eingeschrankt.
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A. MATHUR

CTOXACTHYECKAA MOJEJIb KOHBEKTMBHOIO NEPEHOCA TEIJA YACTHLAMU B
NCEBJOOXWKEHHLIX CJIOAX '

Anporaims—KoOHBeXIHS 4aCTHIl RKBJISETCH AOMHHHPYIOLMM (aKTOPOM TEILTONEPEHOCa B NCEBAOOKH-
KEHHBIX CJIOSX MEJKHX YacTHU NpH TemnepaTypax Huxke 650 K u nasnednax, 61M3KHX X OaBJIeHHIO
okpyxaioulelt cpeanl. [lepeHoc Tenna ocywecTBAAETCA NyTEM HECTaLMOHADHOHR TerUloNepenayu Mexay
MOBEPXHOCTHLIO TEIIOOOMEHA H TOPAYMMHA YACTUIAMM, HAXOJRUWMMHCE B BO3BPATHO-ANEPHOLHYECKOM
woHTakTe ¢ Hell. KoHTaxT MeXAy 9acTHUAMHA H MOBEPXHOCThIO PACCMaTPHBAETCA KaK CTOXACTHYECKHIL
NpOLECC, MEXNAKETHHE NEPHOIL KOTOPOTO OMMCHIBAIOTCA pacnpeneneHuem I[lyaccoHa, a mepuolnt
KOHTAKTa—OTPHUATEAbHLIM SKCMIOHRCHLHANBHBIM DPACIpPEaceHHEM. DTH 0COGEHHOCTH NpOLEcca KOH-
TAKTa BBEJCHHI B NMPEIOKEHHYIO BackaxoBbIM MOIe/b MaKETHOIO TEIIONEPEHOCA, ¥ NOMYYCHH BbIpa-
XEHHS S pacueTa KoxpOHIMEHTa TemnonepeHoca u ero Bapuaumi. [Jaruste OskaitHaka u Yena no
pacnpesie/ieHHIO NMEPHOJAOB KOHTAKTAa UIA CJIOA CTEKJISHHBIX MIAPHKOB pa3MepoM 245 MKM mpd Tpex
CKOPOCTSX NCEBAOOXKMCHHA HCIOJBL3YIOTCK JUIA pacdeTa Ko3bdHIHEHTA TEIUIONEPEHOCAa H €ro BapHa-
mmit npn 3THX ckopocTax. Hafineno, yto pacueTnbie KO3(pPHUMEHTH TEMIONEpPEHOCa XOpOWIO Coria-
CYIOTCH € TIOJy4eHHBIMH IKCIIEPHMEHTANBbHO. ONHAKO MAJIOE YHCIO ORHOBPEMEHHO MORYYEHHMWX JaHHBIX
MO pacnpenesneHusM MNEPHOXOB KOHTAKTA H TEIUIONEPEHOCY OTPAHMYHBAIOT BOZMOKHOCTb APOBEPKH
aJeKBAaTHOCTH [JaHHON Mozneny.



