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Abstract--Particle convection is the predominant mode of heat transfer in gas-solid fluidized beds of small 
particles at temperatures below 650 K and near-ambient pressures. The mechanism of heat transfer is 
unsteady-state conduction between the heat transfer surface and the hot bed particles which contact it in 
a recurrent, aperiodic manner. The particle-surface contacting is treated here as a stochastic process with 
the inter-packet periods being described by a constant-rate Poisson distribution and the contact periods 
by a negative exponential distribution. These features of the contacting process are incorporated into the 
packet heat transfer model of Baskakov, and expressions for the heat transfer coefficient and its variance 
are derived. The contact period distribution data of Ozkaynak and Chen for a bed of 245 pm glass beads 
at three fluidizing velocities is employed to predict the heat transfer coefficient and its variance at the three 
xelocities. The predicted heat transfer coefficients are found to be in excellent agreement with the mca~,ured 
heat transfer coefficients, tlowever, paucity of sinmltaneous contact-period distribution and heat tran<br 

data has limited further verification of this model. 

INTRODUCTION 

HEAT TRANSFER rates to surfaces immersed in gas 
fluidized beds are several times those to surfaces in 
flowing gas streams. The enhancement in heat transfer 
occurs due to the contact between the hot, solid 
fluidized particles and the heat transfer surface. This 
mode of heat transfer, termed as particle convection, 
supplements the gas convective and radiative modes 
of heat transfer in gas fluidized beds, and is the domi- 
nant mode in small particle fluidized beds. Radiative 
heat transfer constitutes only 15% of the total heat 
transfer at a bed temperature of  1175 K, and is neg- 
ligible at temperatures below 675 K [1]. Gas con- 
vective heat transfer is smaller than particle convective 
heat transfer by a couple of  orders of  magnitude in 
small particle beds at near-atmospheric pressures [2]. 
It has been argued on hydrodynamic principles that 
gas convective heat transfer is negligible for beds with 
Rem~" < 10, or Ar < 21 700 [3]. 

The particle convective heat transfer process has 
been extensively studied, and several models have 
been proposed. These models have been discussed and 
evaluated in various monographs and reviews [4-7], 
and the approach which is now accepted is broadly 
envisioned to occur as follows: hot, solid particles 
move from the bulk of  the bed and contact the surface 
in a recurrent, aperiodic manner. The mode of  heat 
transfer during the contact period is unsteady-state 
heat conduction. The earliest heat transfer model is 
due to Mickley and Fairbanks [8], who conceptualized 
the volume of the bed emulsion that is affected by the 
thermal process during a contact period as a 'packet ' ,  
and related the instantaneous particle convective heat 

transfer coefficient, hp(t) (or its inverse, the packet 
resistance, Rp), tO the packet properties as 

hp(t) = l 'Rp = [keC~pUtcl~] I -'. (1) 

Equation (1) overpredicts tip, especially for short 
packet contact  periods, and implies that it tends to 
infinity as tc tends to zero. Baskakov [9] argued that 
the packet continuum is significantly disturbed close 
to the heat transfer surface and suggested that an 
additional "contact" resistance, R~, occurs next to the 
heat transfer surface, in series with Rp. The instan- 
taneous packet heat transfer coefficient, h / t ) .  for the 
constant heat transfer case is then given b~ [6] 

hp(t) = erfc (X) exp (,;(:)/'R, (2) 

where 

/ X =  Rp Rcx/r~. 13) 

Xavier and Davidson [10] suggest the contact resist- 
ance can be expressed as 

Rc = dp/kgb. (4) 

The assumption in describing the contact resistance 
by equation (4) is that the contact resistance consists 
of  a gas layer of  average thickness, d/b, in between the 
heat transfer surface and the emulsion. However, the 
presence of  such a film is doubtful, and the contact 
resistance is best explained in terms of  the real contact 
geometry between particles and the surface. Decker 
and Glicksman [1 I] point out that actual particle-to- 
surface contact  occurs only at a limited number of 
microscopic roughness elements. Their model of  the 
total conduction heat transfer within the particle in 
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NOMENCLATURE 

A dimensionless variable, Yz/C 
d value of A at the expected value of C 
Ar Archimedes number, gd3 p~(ps- p~)/#2 
b constant 
C inverse of mean packet contact period 

[s-'] 
C expected value of C [s- t] 
C~ heat capacity of solid particles 

[J kg - I  K - q  
dp bed particle diameter [m] 
D average particle arrival rate [s- t] 
F survivor distribution function 
g acceleration due to gravity [m s -  2] 
hp instantaneous packet to surface heat 

transfer coefficient [W m-  2 K-  ~] 
/7 v average particle convective heat transfer 

coefficient [W m- " K -  ~] 
/~'r. ~ expected value of the average particle 

convective heat transfer coefficient 
[W m--' K - ' ]  

k~ thermal conductivity of emulsion packet 
[ W m - '  K -L] 

/% thermal conductivity of fluidizing gas 
D V m - '  K - ' ]  

ks thermal conductivity of solid particles 
[Wm -I  K - q  

M mean of a distribution 
N number of packets involved in the heat 

transfer process 
Aru, expected value of the Nusselt number, 

F,p,~dp/k, 
p probability distribution function of 

packet contact period 
p~ instantaneous probability of the presence 

of i packets at a point on the surface 
P expected number of packets present at a 

point on the surface 
Qr heat transferred from a packet to the 

surface [J] 

QpN heat transferred from N packets to the 
surface [J] 

Re surface contact thermal resistance 
[m: K W-  l] 

Rp packet thermal resistance [m: K W - ' ]  
Re Reynolds number. Udp&/.u 
Remr Reynolds number at minimum 

fluidization, U,.rdppg/~ 
t¢ contact period of a packet [s] 
t~ time between successive packets 

(interpacket period) Is] 
tt total time between the arrival of 

successive packets [s] 
TB bed temperature [K] 
T~ surface temperature [K] 
U superficial fluidizing velocity [m s- ~] 
Umr superficial fluidizing velocity at minimum 

fluidization [m s- t] 
V equilibrium distribution of interpacket 

periods 
W equilibrium distribution of packet 

contact periods 
X dimensionless variable, R~/R~,('n 
Y square root of inverse packet time 

constant [s- ~/2] 
Z dimensionless variable defined by 

equation (29). 

Greek symbols 
% thermal diffusivity of fluidizing gas 

[m 2 s - ' 1  
e time-averaged bed voidage 
emr time-averaged bed voidage at minimum 

fluidization 
/~ viscosity of fluidizing gas [kg m-  ~ s-  t] 
Pe emulsion packet density [kg m- 3] 
pg fluidizing gas density [kg m-3] 
p, density of solid particles [kg m- 3]. 

the vicinity of the contact point as well as conduction 
through the gas layer separating the particle and 
surface shows that very high heat transfer rates 
through the roughness elements occur only for the 
first 10-20/~s of the contact period. Subsequently, the 
contact Nusselt number remains practically un- 
changed. The value is also reasonably constant over 
a wide range of particle thermophysical properties 
and surface roughnesses. This probably explains why 
a simple constant like b is successfully able to represent 
the contact Nusselt number. The value of b ranges 
from 4 to 12 in the literature. From equations (1), (3) 
and (4), X can be expressed as 

x =  r t  ','2 = [tk~b2/koGpod~] ''2. (5) 

The amount of heat transferred per unit surface area 
during the packet contact period is therefore given by 

f: Qp = (Ta - Ts)hp(t) dt 

fo = [(TB-- T,)/I~] exp (Y'-t) erfc (Yt ':2) dt 

= [(TB -- Ts)/Y2&l[erf ( YtJ t2) exp (Y:t¢) 

+ (2 r t J / ' / , / ~ )  - II. (6) 

Equations (6) highlights the influence of the packet 
contact period, to, on the packet heat transfer: the 
amount of heat transferred is zero for zero contact 
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period, and increases with the square root of the con- 
tact period for very large values of t~. Over a long 
period of time, the heat transferred will be the sum of 
the heat transfer due to the many packets that have 
contacted the surface. Thus, if N packets have con- 
tacted the surface, the total heat transfer is given by 

N 

Qp.~ = [(TB-- T~)/Y2&] ~ [erfc (Yt~,:')exp (Y'-t¢,) 
i - [  

+ 2 ( Y t J ~ / x ) - l ]  (7) 

where t¢, is the contact period of the ith packet. This 
heat transfer has occurred during the time period t, 
where t~ is equal to 

( ' "  

t~ is the time period between the departure of the 
ith packet and the arrival of the ( i+  l)th packet and 
referred to here as the inter-packet period. The aver- 
age particle convective heat transfer coefficient, /Tp. 
can then be detined as 

= Q . , , . / [ ( r . -  TOt,] 
27 

= ~ [erf ( t't~, 2) exp (Y:G)  

N 

+2( Yt~.,xi~z)-- l]i[y2R< ~ (tg,+t<,)]. 
i = 1  

(8) 

In the case where the contact period of all packets 
is the same and the time periods between successive 
packets are equal, equation (8), without the sum- 
mations, gives the value of/Tp [6]. 

The contact periods and the time periods between 
packets, however, are stochastic variables and can 
take values between zero and infinity for a macro- 
scopically undisturbed system. It is a simplification to 
assume t~, = (t~)~ and tg, = (tg)~. If this assumption 
is made, it implies that for a particular set of bed 
conditions, tg and t¢ have unique values, and measured 
values are random fluctuations about these unique 
values. In such a case, the experimentally obtained 
frequency distributions of t~ and t~ would be approxi- 
mated by the normal curve. Experimental evidence, 
however, indicates that the t¢ frequency distribution 
is best approximated by log-normal and gamma dis- 
tributions [12]. Both these latter distributions are 
skewed and take values from zero to infinity. 
Additionally, the negative exponential distribution 
(which is a special case of the gamma distribution) is 
the only distribution having a truly Markovian 
character inasmuch as it is endowed with a complete 
lack of memory [I 3]. Consequently, the contact period 
of the ith packet is in no way affected by the contact 
periods of all the preceding ( i -  1) packets. This exper- 
imental finding therefore argues for the treatment of 
the packet contact periods as a Markovian stochastic 
variable. This is carried out in the following section. 

STOCHASTIC MODELLING OF PACKET 
CONTACT PERIODS 

It is not possible to deterministically model the 
packet-surfiace contacting process. The packet depar- 
ture is probably influenced by the pressure waves pre- 
ceding bubbles (whose formation and distribution in 
the bed are themselves random), the local geometry 
and roughness of the surface, jetting of air from 
bubbles trapped upstream of the immersed surface, 
etc. The net effect of all these phenomena (seemingly 
random at the macroscopic level) is to impart a ran- 
domness to packet departure. Consequently, the 
packet contact period can be treated as a Markovian 
process. Specifically, it can be assumed that the prob- 
ability of packet departure is constant  throughout 
the contact period. For example, if the instantaneous 
probability of packet departure is 0.4 at the time of 
packet arrival, it is still 0.4 after the packet has been 
at the surface for 1 ms, or 10 ms, or 1 s: the length of 
the contact period does not influence the instan- 
taneous probability of departure. This seems to be a 
fair assumption as the macroscopic bed characteristics 
remain unchanged during the contact period. 

The probability distribution function (pdf) of the 
packet contact period is then given by the negative 
exponential distribution (see p. 458 of ref. [13]) 

p(t) = Cexp ( - C t )  (9) 

where C is the probability of packet departure at any 
instant (which is constant over the contact period). 
Equation (9) implies that the probability that a packet 
will have a contact period equal to t is given by 
C exp ( - Ct). 

Now, over a long period of time, a large number 
of packets contact the surface. These packets have 
different contact periods. Let W(t) represent the con- 
tact period distribution of the packets. ~tltt  is then 
given by' (see p. 28 of ref. [14]) 

W(t) = F(t)/M (10) 

where F(t) is the so-called 'survivor function',  defined 
a s  

F(t) = p(x) dx (11) 

and M is the expected value of the contact period 

M = tp(t) dr. (12) 

Thus 

f ~ / Io" 
W(t) = p(x) dx /  tp(t) dr. (13) 

Interestingly enough, the age distribution of packets 
over a large surface area at a given instant is also given 
by W(t) and defined by equation (13) (see p. 61 of ref. 
[14]). This shows the statistical equivalence of con- 
sidering the behaviour of packets at one point on the 
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surface for a long period of time and that of packets 
over a large surface area at a given instant. This is a 
useful property that will be utilized later to incor- 
porate time-averaged surface properties into equation 
(8), which has been developed for a local time-depen- 
dent process. 

From equations (9) and (13) 

W(tc) = C exp ( -  Ctc). (14) 

Thus, for the particular case when the packet contact 
period pdf is exponential, the distribution of contact 
periods (or ages) is also exponential. The properties 
of the negative exponential distribution imply that the 
mean contact period would be I/C. This distribution 
is now used to develop the stochastic heat transfer 
model for particle convection. 

HEAT TRANSFER M O D E L  

The average heat transfer coefficient obtained from 
the packet theory is given by equation (8). The sum- 
mations in equation (8) are converted to integrals 
using the contact period pdf of equation (14) by the 
transformation 

Zf(t¢,) = W(t¢)f(t¢) dt¢, (15) 
i 

Thus 

kTp = (C/g:Rc) [eft (YtO/2) exp { - ( C -  YZ)tc} 

+ (2 Y/,v/n)t¢ exp ( - Ctc) 

I/If: - e x p  ( -Ctc) ]  dt¢ tc W(t¢) dt¢ 

+ f f  t, V(tg)dtg] (16) 

where V(tg) is the distribution of inter-packet (or gas 
contact) periods. Solution of equation (16) yields 

[I/YZ&][(y2/c) ':2-1]/[1-(C/Y2)I (17) 

J o t~ W(t¢) dt~ + tg V(lg) dt s 

The first term in the denominator is equal to l/C, but 
evaluation of the second term is not possible until the 
form of V(tg) is known. At this point, it is assumed 
that the distribution of inter-packet periods at the 
surface is a Poisson process. Then V(ts) is also given 
by the exponential distribution (see p. 6 of ref. [I 5]) 

V(tg) = D exp (--Dtg) (18) 

where 1/D is the mean inter-packet period. The second 
term in the denominator of equation (17) is then equal 
to I/D. The average heat transfer coefficient is there- 
fore given by 

(i/&)[{:~' -'- I}/{A- I}1 (19) 
~, = 1 + (C/D) 

where 

A = YZ/C. (20) 

Both C and D are system variables, and need to be 
determined experimentally. However, they are inter- 
related through the particle fraction at the surface. 
This interrelationship is discussed in the following. 

The assumption of the inter-packet period being 
described by a Poisson process of rate D, and the 
packet contact period being described by an expon- 
ential distribution, equation (14), leads to the fol- 
lowing expression for the probability that i packets 
are present at a point at a given instant (see p. 177 of 
ref. [15]) 

] Pi = [(D/C)'/i! (D/C)J,/./! (21) 
J 

where k is the maximum number of packets that come 
into contact with the surface at any given instant. At 
a point on the surface, only one packet can come into 
contact with it at a given instant ; hence k is one. The 
expected value of the number of packets at any point 
on the surface is therefore 

P =  O ' p o + l ' p t  

= [ ( O ) ( I ) + ( 1 ) ( D / C ) ] / [ 1  + (D/C)] 

= (D/C) / [ !  + (D/C)] .  (22) 

Since P is the time-averaged expected number of 
packets at each point on the surface, and the 
maximum number of packets at each point can be 1, 
the ratio, P/l, is the time-fraction for which a point 
is covered by packets. Using the statistical equivalent 
of time-averaged and space-averaged properties 
brought out earlier (following equation (13)) 

P/1 = (D/C)/[I+(D/C)] = 1 - ~  (23) 

where g is the time-averaged voidage. Thus 

1 + (C/D)  = 1/(1 - g ) .  (24) 

Equation (24) represents the theoretical development 
of an 'obvious' solution which is very widely used in 
fluidized bed heat transfer models. It can be visualized 
as the equality of the particle fraction at the surface 
with the fraction of time for which packets are present 
there. 

Substituting in equation (19) 

hp = ( l /Rx) ( l - -g ) [{a ' - ' - -  1}/{A-- 1}1. (25) 

Variance of calculated lip 
The value ofhp predicted by equation (19) is a mean 

or expected value: in practice, hp values will range 
over a band. This variation occurs because of the 
uncertainty in the value of C which is calculated by 
regression of contact time data. This regression yields 
an expected value of C, C, and its variance, Var (C). 
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The uncertainty' in hp can then be represented by its 
variance, Var (tip), which is related to the variance of 
C as follows [16]: 

Var (fie) = (dtTp/dC)~,_c Var  (C). (26) 

DiffErentiating equation (19) with respect to C gives 

(d/Tp dC) = ( t T p C ) [ ~ ( Y : / C ) / ( ( Y 2 / C )  - 1)} 

-{(Y2/C)'  2/'(2((Y:,'C)' 2_ 1))} 

- { ( C / D ) / ( I + ( C / D ) ) } ] .  (27) 

From equation (22) 

(C/D),,'{ I + (C/ 'D)} = e. (28) 

F rom equat ions (26}-(28)  

Var  (/7 r) = (Fin ~ L=) z Var  ( C ) [ { . d / ( d -  I)  I 

- { d '  2/2(d' , - ' -1)}.-~,1:  (29) 

where 

Thus 

and 

/Tp.~ = (I ' R , ) ( I - - e ) [ ( 5 '  -~- 1)~(,~-- 1)]. (30) 

m,,~ = b(i -~ . ) [ (d"- ' -  l ) / ( . g - I ) ]  (3i)  

Var (Nu)  = (dv,'kg) Var (/Tp). (32) 

C O M P A R I S O N  WITH EXPERIMENTAL DATA 

Evaluation of Nu~ using equation (31) requires the 
knowledge of three variables: b, e, and A. There is 
some dispute in the literature as to whether b should 
be 6 [10] or 12 [17]. The difference in the value of 
these two estimates is large, and comparison with 
experimental data should reveal which one provides a 
better fit. In other words, b is treated as an empirically 
determined constant. ( l - e , )  is an easily measured 
quantity. In the absence of experimental data, e can 
be evaluated from the following correlation for small 
particle beds [I 8] : 

~: ~, ( 1 - r,) = 4(  R e / A r )  ° '~ .  (33) 

Grewal and Saxena [18] attribute an uncertainty of 
_+ 10% to equation (33) for beds with a wide variety 
of materials (glass beads, silicon carbide, nickel, 
copper, sand, coke, alumina, etc.), average particle 
diameters ranging between 167 and 1450/~m, atmos- 
pheric pressure, and temperature up to 1373 K. Packet 
properties required to compute y2 are calculated from 
equations (34) and (36) following the recom- 
mendations of Xavier and Davidson [10]: 

(l,. /]¢g) = (ks/],- )z_F(O. IdpUmr/~g) (34) 

where 

Z = 0 .28-0 .757 log s~r-0 .057 log (k~/kg) (35) 

and 

p~ = p~(l--~,mr). (36) 

Table 1. Properties of the 245 um glass beads [12] 

Particle thermal conductivity 
Particle heat capacity 
Particle density 
Slumped bed void fraction 
Minimum fluidizing velocity 

0.89 W m JK 
753.6Jkg- '  K 
2470 kg m 
0.39 
0.058S m s 

It is implicit in equations (34}-(36) that the packet 
consists of incipient fluidized emulsion. 

In this comparison, the values of C have been taken 
from the data of Ozkaynak and Chen [12] for the 
contact period distributions in a bed of 245 szm glass 
beads at three different velocities. This particular data 
set has been chosen as simultaneous measurements of 
the packet contact period distribution and the heat 
transfer coefficient are available. The frequency data, 
graphically presented by Ozkaynak and Chen [12], are 
fitted to the form of equation (14) and the maximum 
likelihood value of C, (~, is obtained. Table 1 presents 
the properties of the 245 itm glass beads. Figure I 
shows a comparison of the best-tit Poisson dis- 
tributions with the experimental data. It should be 
noted that owing to the nature of the Poisson dis- 
tribution, the best-fit was estimated with the contact 
period data in deciseconds (rather than seconds). 
Consequently, the constant within the exponential 
term in equation (14) becomes ten times the best-fit 
value of C given in Table 2 when the contact period 
is in seconds. 

Table 2 lists the regressed values of C (and the 
associated variance) for the three cases. The ~aluc of 
Y-" for the bed (which is not affected by ~elocity) is 
0.0674b e. The bed is assumed to be at 300 K and 
I atm. The computed values of 17p.~. and Var (17p) 
at the three velocities are also listed in Table 2. as arc 
the experimental values of h e at these conditions as 
measured by Ozkaynak and Chen [t 2]. A comparison 
of the calculated tTp.~ values with the experimental data 
of Ozkaynak and Chen [12] over the complete velocit} 
range is shown in Fig. 2 for the two values of b. 
The error bar on the calculated values indicates one 
standard deviation (square root of the variance of hp) 
on either side of 17p.~. 

Excellent agreement of the model predictions with 
a b value of 12 occurs with the experimental data. The 
expected values slightly overpredict the experimental 
values, but  this overprediction is always less than 6% 
and well within the one standard deviation range 
shown in Fig. 2. 

CONCLUSIONS 

A stochastic picture of the particle convection pro- 
cess is drawn and used to develop a heat transfer 
model. Unfortunately,  due to the paucity of sim- 
ultaneous particle contact period distribution data 
and heat transfer data, model predictions could be 
compared with experimental data at three points only. 
At these three points, excellent agreement is obtained 
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FIG. 1. The equilibrium contact period data of Ozkaynak and Chen [12] for three velocities in a bed of 
245 14m glass beads and the corresponding best-fit Poisson distributions. 

Table 2. Computed properties of the beds of 245 ~4m glass 
beads at different velocities 

U(m s- ' )  
O. 122 0.244 0.396 

C (s-~) 0,3392 0.5781 1.087 
Var (C) (s -L) 0.1046 0.3039 1.4768 

0.4985 0.5365 0.5635 

/Tp.0 ( W m - '  K-I)  
b = 6 282.07 268.9 260.0 
b = 12 565.5 537.9 520.0 

Var (tip) 
b = 6 1386.55 1 5 7 0 . 1 0  2352.68 
b = 12 5572.96 6282.75 9410.73 

~(/;p) 
b = 6 37.2 39.6 48.5 
b = 12 74.7 79.26 97.0 

543.9 521.9 492.0 ~p,e~p 
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FIG. 2. Comparison of heat transfer coefficient predicted by 
the model for two values of b with the experimental data of 
Ozkaynak and Chen [12]. The vertical bars on the predicted 

values represent one standard deviation on either side. 

between the expected value of  the particle convective 
heat transfer coefficient (predicted by the model) and 
the experimentally measured overall heat transfer 
coefficient. The overall heat transfer coefficient can be 
considered equivalent to the particle convective heat 
transfer coefficient here since this data pertains to a 
bed of  small particles (245/am glass beads) at ambient 
conditions in which the gas convective and radiative 
components  of  heat transfer are negligible. 

This limited comparison also clearly shows that the 
contact Nusselt number is 12 (as previously shown by 
Gloski et al. [17]). In a sense, this confirms the non- 
smooth particle surface contact picture of  Decker and 
Glicksman [Ii],  and brings out  the fact that the 
majority of  heat transfer occurs through the micro- 
scopic-level gas gaps between the surface and the 
particle. The model development also brings out the 
assumptions which underlie the equivalence of  the 
average heat transfer coefficient and the product of  
the local heat transfer coefficient and the particle con- 
centrat ion:  an exponential distribution of  particle 
contact  periods, and a constant-rate Poisson dis- 
tribution of  interpacket periods. 

Much more comprehensive testing of  the model is 
required over a range of  particle sizes, bed pressures 
and temperatures. The velocity dependence is shown 
to be well represented by the model. 
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UN MODE L E  STOCHASTIQUE POUR LA CONVECTION T H E R M I Q U E  SUR LINE 
P A R T I C U L E  DANS DES L1TS FLUIDISES GAZ SOLIDE 

ROsum4---La convection de particule est le mode predominant de transfert thermique dans des lits fluidises 
de petites particules ~i des temperatures inf~rieures ~i 650 K et :i des pressions proches de l 'ambiance. Le 
m6canisme de transfert de chaleur est la conduction variable entre la surface et les particules du lit chaud 
qui sont en contact avec elle d 'une fa~;on r+currente et ap6riodique. Le contact particule-surface est trait+ 
comme un processus stochastique avec des p~riodes qui sont d~crites par une distribution de Poisson et les 
p~riodes de contact par une distribution exponentielle n6gative. Ces m6canismes de contact par une 
distribution exponentielle nOgative. Ces m+canismes de contact sont incorpor6s clans le modele de transfert 
de Baskakov et des expressions sont  obtenues pour Ie coefficient de transfert thermique et sa variance. Les 
donn~es de distribution de p6riode de contact de Ozkaynak et Chen pour un lit de billes de verre de 245 
t~m 5, trois vitesses de fluidisation sont  employ6es pour pr6dire le coefficient de transfert thermique et sa 
variance aux trois vitesses. Les coefficients ainsi calcut~s sont trouv~s 6tre en excellent accord avec les 
coefficients mesur6s. N+anmoins, la raret~ des donn+es simultan6es sur la distribution des pOriodes de 

contact et des transferts de chaleur limite la v6rification de ce module. 

EIN STOCHASTISCHES M O D E L L  F OR DIE W A R M E U B E R T R A G U N G  D U R C H  
P A R T I K E L K O N V E K T I O N  1N W I R B E L S C H I C H T E N  

Zusammenfassung--Partikelkonvektion ist der dominierende Mechanismus der W/irme/ibertragung in Gas- 
Festk6rper-Wirbelschichten kleiner Partikelgr6Be, Temperaturen unterhalb 650 K und nahezu Umgebungs- 
druck. Der W/irmefibergang erfolgt dutch instationS, re Leitung zwischen tier WS.rmetauscherober- 
fl/iche und den heigen Partikeln, die sich in einer unregelm/iBig wiederkehrenden Weise beriihren. Die 
Berfihrung der Partikel wird als stochastischer Vorgang behandelt, der zwischen einer Kontaktphase  
mit der WfirmetauscherftS.che und einer Phase, in der sich die Partikel in der Schicht befinden, unterscheidet. 
Die erste Phase wird durch eine Poisson-Verteilung beschrieben, die z~veite durch eine negative Exponential- 
verteilung. Diese Merkmale des Kontaktvorgangs werden in das Modell yon Baskakov eingefiihrt ; es ergeben 
sich Austriicke fiir den W/irme/ibergangskoeffizienten und seine Schwankung. Die Verteilungsdaten yon 
Ozkaynak und Chen fiir die Kontaktperiode in einem Wirbelbett mit Glaskugeln (Durchmesser 245 l~m) 
bei drei unterschiedlichen Fluidisierungsgeschwindigkeiten werden zur Berechnung von W/irme/ibergangs- 
koeffizienten und deren Schwankung verwendet. Die Ubereinst immung mit MeBwerten ist hervorra- 
gend. Die Verifikation des Modells "6'ird jedoch durch einen Mangel an Daten ffir die Verteil- 

ung der Kontaktperi6de und den WS.rmefibergang eingeschr/inkt. 



1936 A. MATHUR 

CTOXACTHMECKA.fl MO~F_.f[b K O H B E K T H B H O F O  HEPEHOCA TEI'UIA MACTHHAMH B 
FICEB,/~OO~KH~K EH H b lX C.~IO,qX 

A ~ r a m m ~ - - K o u s e K u ~  qac'rHu xB~aerca ~IOMHHHpylouDIM (~agTOpOM TelinouepcHoca B nCCBIIOOXtl- 
XeHHbIX C~OAX Me21KHX qacrHu npa  TeMnepaTypax HHXe 650 K H ~as~tetmax, 6~H3gax g ~as~tesmo 
ogpyxalowei~ c p e ~ .  HepeHoc Tert~a ocymecranacrca  nyTeM necratmonapnoi~ Tenaonepe~aqM M e ~ y  
nosepr, HOCTbIO Tennoo6MeHa H ropgqt~m qacTHIlaMH, HaXOJLqlLtHMHCa s SO3SpaTHO-arlepHOa~lqeCgOM 
gowragre c He~. Kowragr  MeiG1y qaCTHUaMK H nosepxsocTh~o paccMaTpasae'rca gag cToxa~rasecgmi 
npouecc, Me~mag~rH~e nepno~ll~ KOTOpOFo OnHcMBatoTCa pacnpe~e~eHXeM ['[yaccoHa, a n e p s o ~  
gOHTarra---oTpHUaTe.r~mdM 3KCHOHeHI~aY~HblM pacnp~eJIeHHeM. ~I"H OCO6~HHOL'TH H ~ U . ~ a  gOH- 
Tag'ra ese~eHl,i e npej~noxeI-iHylo l ~ a c g a g o e ~  MO~e~b nageTHoro TetulonepeHoca, s nonyqeH ,a mapa- 
XeHH~[ ~Jla pacqeTa g o ~ m m e t r r a  TerL~onepe~toca H ero sapHallHfi. ~anm~e O~gafmaga n Mesa no 
pacnpe~e~eHmo nepHollon gowrag-ra ~ t a  c.qoa c'rCK~gHHMX mapngos  pa3MepOM 245 MKM l]pH Tpcx 
cKopOCTgX HCeB~OO~KH~KeHH~ Hcno~lb3yloTcg K~Ig pacseTa gO:~HILReHTa TelUloflepeHoca it[ ero sapHa- 
11~ IIpH 3THX CKOpOCT~LX. Haft~leHo, ~rro paCqCTHblC KO~[N~HI/HeHTI~ Ten~lonepcHoca xopolllO corna- 
cylOTC~I C nO.rly~eHHHMH 3gcnepHMeHTa.rlbHO. O ~ a g o  Ma~oe ~IHC.qO O~HOBpeMCHHO HoMyqeHHh/J~ £taSH~X 
no pacnpc~Ic~leHH~lM neplio~oB goHTarra H TeluIonepeHocy orpaHH~HBalOT BO3MO2KHOCTb nposepgif  

a~cKBaTHOCTH ~aHHO~ MO~e.rlH. 


